齿轮在传动中的应用很早就出现了,公元前三百多年,古希腊哲学家亚里士多德在《机械问题》中,就阐述
了用青铜或铸铁齿轮传递旋转运动的问题。中国古代发明的指南车中已应用了整套的轮系。不过,古代的齿轮是用木料制造或用金属铸成的,只能传递轴间的回转运动,不能保证传动的平稳性,齿轮的承载能力也很小。据史料记载,远在公元前400~200年的中国古代就已开始使用齿轮,在我国山西出土的青铜齿轮是迄今已发现的最古老齿轮,作为反映古代科学技术成就的指南车就是以齿轮机构为核心的机械装置。17世纪末,人们才开始研究,能正确传递运动的轮齿形状。18世纪,欧洲工业革命以后,齿轮传动的应用日益广泛;先是发展摆线齿轮,而后是渐开线齿轮,一直到20世纪初,渐开线齿轮已在应用中占了优势。
早在1694年,法国学者Philippe De La Hire首先提出渐开线可作为齿形曲线。1733年,法国人M.Camus提出轮齿接触点的公法线必须通过中心连线上的节点。一条辅助瞬心线分别沿大轮和小轮的瞬心线(节圆)纯滚动时,与辅助瞬心线固联的辅助齿形在大轮和小轮上所包络形成的两齿廓曲线是彼此共轭的,这就是Camus定理。它考虑了两齿面的啮合状态;明确建立了现代关于接触点轨迹的概念。1765年,瑞士的L.Euler提出渐开线齿形解析研究的数学基础,阐明了相啮合的一对齿轮,其齿形曲线的曲率半径和曲率中心位置的关系。后来,Savary进一步完成这一方法,成为现在的Eu-let-Savary方程。对渐开线齿形应用作出贡献的是Roteft WUlls,他提出中心距变化时,渐开线齿轮具有角速比不变的优点。1873年,德国工程师Hoppe提出,对不同齿数的齿轮在压力角改变时的渐开线齿形,从而奠定了现代变位齿轮的思想基础。
19世纪末,展成切齿法的原理及利用此原理切齿的专用机床与刀具的相继出现,使齿轮加工具军较完备的手段后,渐开线齿形更显示出巨大的优越性。切齿时只要将切齿工具从正常的啮合位置稍加移动,就能用标准刀具在机床上切出相